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ABSTRACT

A complete potential based framework utilizing internal state variables is put forth
for the derivation of reversible and irreversible constitutive equations. In this framework
the existence of the total (integrated) form of either the (Helmholtz) free energy or the

Gibbs) complementary free energy are assumed a priori. Two options for describing the
ow and evolutionary equations are described, wherein option one (the fu//y coupled form)

is shown to be over restrictive while the second option (the decoupled form) provides
significant flexibility. As a consequence of the decoupled form a new operator, i.e. the
Compliance operator, is defined which provides a link between the assumed Gibb's and

complementary dissipation potential and ensures a number of desirable numerical features,
for example the symmetry of the resulting consistent tangent stiffness matrix. An

important conclusion reached, is that although many theories in the literature do not
conform to the general potential framework outlined, it is still possible in some cases, by
slight modifications of the employed forms, to restore the complete potential structure.

1.0 INTRODUCTION

In general, the inelasticity exhibited by the thermomechanical response of

engineering materials is related to irreversible thermodynamic processes. These involve

energy dissipations and material stiffness variations due to physical changes in the

microstructure. Consequently, thermodynamic arguments have often been utilized as a

foundation on which phenomenological constitutive laws may be formulated, i.e., the

so---called internal variable formalism [1-8]. Material descriptions such as elastoplastic,

viscoplastic, continuum-based damage, etc., (all falling into this framework) have been

subjects of extensive research over the years [8-21].

From a strict mathematical standpoint, however, the *'thermodynamic-

admissibility" restriction associated with the dissipative mechanisms underlying the above

material models reduce to the well-known (local) Clansius-Duhem or dissipation

inequality [1,2]. Indeed, this is the form that is typically employed in discussing the general

structure of the "thermodynamically -based" constitutive equations developed [1---5,8,13];

whereby the mathematical constructs such as the flow or dissipation potential and the

attendant normality/generalized normality relations, i.e., the fl -form [6,8,9,15-17,20,22]



are introduced solely for conveniencein satisfyingthe aboveconstraints basedon simple

propertiesof non-negativeness and convexity of these functions. We emphasize, however,

that such forms do not presuppose, or automatically imply, the existence of the total

(integrated) forms of the associated thermodynamic potentials ; e.g. the (Helmholtz) free

energy, or the (Gibbs) complementary free energy. When the latter are utilized a priori,

the corresponding formulations will be described as exhibiting a complete potential - based

structure; on the other hand, those derived from an assumed f]-form are referred to as

incomplete potential-based models.

The (complete) potential-based class of inelastic constitutive equations possess a

number of distinct and important attributes, from both a theoretical as well as

computational standpoint. First, they constitute the cornerstone of numerous regularity

properties and bounding (or limit) theorems in plasticity and viscoplasticity [22-26].

Secondly, they result in a sufficiently general variational structure, whose properties can be

exploited to derive a number of useful material conservation laws [27-29]. Thirdly, on the

numerical side, the discrete form of this same variational structure is of great advantage in

the development of efficient algorithms for finite element implementation; e.g.,

symmetry-preserving material tangent stiffness operators are easily obtained in implicit

solution schemes [30-35]. Finally, this complete potential based framework conveniently

lends itself to intelligent application of symbolic manipulation systems which facilitate the

construction, implementation and analysis of new deformation and damage models [36,37].

With the above background in mind, our objective is to study the general form, and

the ensuing restrictions imposed by a complete potential-based viscoplastic formulation, in

terms of the Gibb's thermodynamic potential, particularly in regard to several of the

presently used forms of the flow and evolutionary laws. It appears that although many of

these theories [e.g. 5,6,10,15-18] do not conform to the general potential framework

outlined, it is still possible in some cases, by slight modifications of the employed forms, to

restore the complete potential structure. However, the question still remains as to whether

these modifications will significantly affect the predictive capabilities achieved by the

original forms. This is not addressed here, but will be addressed in a subsequent paper

[38].

2.0 THEORETICAL FRAMEWORK

We begin by summarizing the basic thermodynamic equations governing the

thermo-mechanical behavior of an initially isotropic material element. An assumed

expression for the Gibb's thermodynamic potential function [1-3] in terms of a number of

state and internal variables characterizing the changing internal structure of the material,
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is taken. For conciseness, the discussion is limited to the case of small deformations, in

which the initial state is assumed to be stress free throughout. Also a cartesian reference

frame and index notation (with summation implied on repeated roman subscripts) is

utilized. It is noticed that all subsequent equations and discussions cart be equivalently

rephrased, using appropriate Legendre transformations, in terms of the (Helmholtz) free

energy and the associated complementary variables.

In its volumetric differential form, the Gibb's thermodynamic potential

G(aij,a/3,W), can be written as follows [2,25]:

dG = -eijdaij - SdT - A/_ da/3 (1)

where S denotes the entropy, aB the internal state variables, A/_ the thermodynamic

affinities corresponding to _/3 (where/3 = 1,..N and the tensorial character of these internal

variables will be defined in the particular context), eij the total strain and aij the cauchy

stress tensor. It follows from equation (1) then that

--0G (total strain) (2)
eij = 0_r..

1j

S = --0G (entropy) (3)
tgT

and

--OG (affinity) (4)

AZ =

are defined as the equations of state [8,39] and aij , T, and a/_ are the "force-like"

thermodynamic state variables while eij , S, and A/_ are the conjugate "displacement-like"

variables.

Now considering the following general form for the Gibb's potential:

G = G(aij, a_,T)

where initially no restrictions are imposed on the functional dependence other than as

declared above. The most general expression for the total strain rate can then be obtained



by differentiating equation (2). That is

• d (--OG) = --8 2G • --8 _G --8 ZG
= . Ors + _f + T (5)

eij _ _ij" 8a i j Oars 8a i j (gaff 8a i j _T

With the above in mind, two options are actually available for describing the flow

and evolutionary equations. The first option assumes a fully coupled form, i.e., one in

which the irreversible strain rate is intimately linked to the thermodynamic internal state,

hence its functional dependence (evolution) is completely defined once G is assumed. The

second option is a decoupled Gibb's form, in which the selected internal state variables are

grouped a priori by separation of the inelastic strain as an independent state parameter

and suppressing all stress dependency of the remaining associated internal state groups in

the selected G function. Both of these options are described separately, below.

2.1 Fully Coupled Form

Consider the followingcoupled form for the Gibb's potential:

G = E(aij ) + M(aij,af) + H(af) - Z(T) - a k k 7 (T-T o)
3

(8)

where initially certain restrictions (coming from the affinities Aft, discussed subsequently)

are imposed on the functions E and M, T O is a reference temperature and _, is the

volumetric coefficient of thermal expansion. Substitution of equations (4) and (6) into (5)

yields a particular expression for the total strain rate, i.e.,

ei j=[-82E +--8_M s]_rrs +[ 8Anl_ T (7)Oai j0ars "-_iT'_'_r a"_" "Jlj f +6ij_

in which the above three terms may be identified as the reversible, irreversible and thermal

expansion components of the total strain rate, respectively. Thus,

• "R _I 'T
eij=eij+ ij ÷eij (8)
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with

_iRj = [--0 _E + --0 2 M.__.ars]_r s (reversible) (9)
Oa i j0ars "-_'i7

eij = [ .l a3 (irreversible) (10)

lj

• T T (thermal) ill)
eij= 6ij7

Furthermore expressions for the entropy and "displacement-like" affinities can be

obtained from equations (3), (4), and (6), i.e.,

S= OZ + akk7 (12)
--3-

and

thus implying the functional dependence of S = S(T,akk ) and A3 = Afl(ars,%?).

Consequently, in its present coupled form certain restrictions now apply to the functions M

and H in order for A 3 to have the above functional dependence. For instance, M must

always be at least linear in stress, and furthermore, given an H that is at least quadratic in

internal state will require that M be at least linear in internal state a3; alternatively given

an H that is assumed to be linear (or zero) in internal state requires that M be at least

quadratic in internal state.

Now assuming the existence of a dissipation potential, _A3,S), the rate of change

of the internal state variables (a_) can be expressed in terms of their corresponding

affinities. That is, the evolution or kinetic law becomes:

0_o (14)

al

Furthermore, considering equations (12) and (13), it is clear that a correspondence between

and a complementary dissipation potential II = _(aij,a3,T ) exist, since _ is an implicit



function of gij and aft through A_, i.e., _a=_A_ gij, a_),T). Note defining the dependence

of f_ on aij,a _ and T does not preclude the inclusion (or dependence) of the associated

thermodynamic affinities as parameters (as opposed to "true" variables), e.g. A_ or eI [cf.

5,8].

Here, in the fully coupled option, we make use of equations (10), (13) and (14)

directly to obtain expressions for the flow, i.e.,

_J = [_aij ] a/_= "_'aij0_° (15)

and evolutionary laws, cf. equation (14),

where A/_ is obtained from equation (13). Note that A/_ and thus the functional

dependence of _ais completely defined once the functions M and H are assumed.

It is evident that the present form is too restrictive (see Onat and Leckie [6] for a

number of examples), in that it requires proportionality between the inelastic strain and

the rate of change of internal state to maintain consistency between the two expressions for

inelastic strain rates in equation (10) and (15).

2.2 Decoupled Form

Here, a less restrictive, yet equivalent, decoupled form can be derived by assuming a

form a priori for the Gibb's potential whereby the inelastic strain is assumed to be an

independent parameter (and not an internal state variable) with two other groupings of

internal "force-like" state variables associated with irreversibility, i.e., a/_ which are

associated with the material inelasticity and D/_ which are associated with the degradation

of the material due to some damage mechanisms [8,12,13]. As an example, one may write

G=E(o'ij)%crije_j%M(o'ij,D_)%H(a_)-Z(T)-akkq_T-To) (16)

3

Where, once again, differentiating equation (2) with the above assumed form for G, an

expression defining the total strain rate can be obtained, i.e.,



eij [--02E --02M Jars. eij'I +[ O_._aij
= + - + 6ijTT (17)

0a i j 0ars "-_i 7-_'_rs" ]bZ

in which the above four terms may be identified as the reversible, inelastic, irreversible and

thermal expansion components of the total strain rate, respectively. Note that h/_ are the

"displacement-like" thermodynamic affinities associated with the internal material

degradation "force-like" variables D/_. Thus,

with

_02M

}.R.,3= [ --0Oai2EjOars + ._off._i_i7._.arslj ars (reversible) (19)

•D_ JJfl]I)Zoa..eij = [

lj

(irreversible) (20)

•T T (thermal) (21)eij= 5ij O'

•I (inelastic strain rate) is to be defined separately, subsequently. Note also that theand eij

definition of A_ follows that of equation (13) (with the suppression of H and equivalance of

a_ and DE) and the evolution of D, that of equation (14) given an assumed form of a

damage dissipation potential _ = _(A_). Various coupled and decoupled deformation and

damage formulations may thus be investigated using this framework.

To provide a framework for the definition of the inelastic strain rate (}[j) and

ensure the thermodynamic admissibility of it, the requirement that the Clausius- Duhem

or dissipation inequality be satisfied is introduced. That is,

• I-,_a_ > 0 (22)dfl(aij,a_) = aijeij

thus differentiating once with respect to stress (aij) and once with respect to internal state,

gives:



•i = (23)
eiJ "_'_ij

and

= -an (24)

Returning to equation (4) and differentiating with respect to time, an expression for

the rate of change of the affinities A# in terms of the rate of change of the corresponding

internal state can be obtained, i.e.,

d r-0G ]= -0_H

A# = [Q#l ] _l (25)

where

-a2H (26)
Q#l = aa#aaI

given the assumed form of the Gibb's potential in equation (16). Due to the fact that the

operator Q relates the "force--like" state variables to the "displacement-like" variables and

is completely defined once a Gibb's potential is chosen, this operator will be defined as the

Compliance operator henceforth. Furthermore it is interesting to note that this operator

provides information relative to the curvature of the Gibb's potential as well as the

relaxation trajectories in the associated state space [40].

Now substituting equation (25) into (24) and rearranging terms, gives,

(27)

which defines the evolution of internal state. Thus equations (23) and (27) represent the

flow and evolutionary laws, respectively, for an assumed _ = _(aij, a_T ) and Gibb's

potential wherein both potentials are directly linked through the internal state variables

a_. It is interesting to note that only under special conditions (e.g., uniaxial states of

stress and scalar internal state variables) does equation (27) reduce to those discussed by

Ponter and Ponter and Leckie [20,22,25].



Clearly, this framework provides a structure in which the flow and evolution laws

are associative, satisfying equation (26) explicitly, and are fully integrable. Furthermore,

this option provides significant freedom (i.e., dfi _) 0) in the definition of the

complementary dissipation potential so that various complete potential based formulations

can be expressed. The price for this additional freedom, however, is in general the

non-trivial inversion of the compliance operator.

3.0 DISCUSSION OF SPECIAL CASES

Equations (14) and (15), and, (23) and (27), providethe general thermodynamic

framework whereby most, if not all, potential based models with associated flow and

evolutionary laws can be derived. To illustrate this a number of classical theories as well

as a few nonclassical forms will be recovered, depending of course upon the assumed form

for the Gibb's potential, i.e., functions E, M, and H.

3.1 Elasticity

Here, if E is assumed to be quadratic in stress, i.e.,

E = -_ Crskl _s akl (28)

and M is assumed to be a separable function linear in stress and internal state (where, a/_ is

taken as a symmetric second order tensor),

M=
=  sars (29)

and H is taken as zero, then from equation (9);

R
e i j = Cijrsars (30)

the classical form describing generalized Hooke's Law [41] is obtained. If an expression

describing nonlinear elastic behavior is desired any scalar form linear or nonlinear in stress

for E and/or M can be chosen.
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3.2 Coupled Damage Elasticity

If a_ is associated with material degradation, i.e., "damage", classical forms of an

elastically damaging material can be recovered. Here, E is assumed as before to be

quadratic in stress (see equation (28)) while M and H are taken as follows:

and

M = -½ ._Crskl arsakl (31)

H = h _ (32)

where the internal state variable (af .@) is the scalar "force-like" damage affinity.

Now calculating the total strain rate, as given in equation (7), we find

eij = [1-._ Cijrs ars- Cijrs ars "_ ÷ _ij 7 T (33)

wherein the term [1- 4 Cijrs is the classical effective compliance tensor [8], and

Cijrs ars _ is the irreversible strain measure. Note that the "displacement-like" affinity

(equation (13))is

D = --_ Cijklaijakl - h n ._n-1 (34)

and that if n=l, we see that the corresponding affinity is the elastic strain energy. Now

with regard to the evolution of ._ equation (14) gives,

--- -_) (35)

3.3 Viscoplasticity

In order to illustrate the potential of this framework for both the coupled and

decoupled option, two specific, yet general, J2 (second invariant of the deviatoric stress)

forms of the Gibb's potential shall be assumed. The only difference between these two sets

is in the assumed dependence of the M(aij,afl) function, where in case I, M is assumed

separable and in case II, non---separable. Thus,

10



with

E = -½ Crskl arsakl

tt=-A _2

f12 = 1/2 aijaij

(36)

and in Case I

and in Case II

with

where

M = L(Srs)P (a_)

= -BSrs ars

v
M=BJ 2 ,_

J2 = 1/2 Zij Zij

r,ij = Sij- aij

(37)

(38)

1

Sij= aij- _ akk_ij

Note that in the above assumed forms for M and H, the internal state variable (a/_)

is taken as a second---order and traceless tensor, and is typically identified as the back stress

tensor and associated with kinematic like hardening [6,10,15].

3.3.1 Coupled Form

Considering the coupled form, and the above definitions, the affinity Aij

the form, in:

Case I

takes on

where

and

Aij = c{Sij- baij}

c

b n ct

= -Am'_2-1 ---_Srs rs"

(39)
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and in,

Cue II

Aij :-BJ_ _[u_ij -v 1.1]

J2
+ A m -1 aij (40)

while the flow and evolutionary laws come directly from equations (15) and (14),

respectively, given an assumed dissipation potential _. It is interesting to note that in case

I the typical effective stress definition found in the literature is recovered (within a factor

c) when n=0, re=l, and A=B, that is,

Aij = c{Sij- aij } (41)

Furthermore, note that for the above assumed forms, the Gibb's potential is a

homogeneous quadratic function which is known to be convex.

For convenience, the dissipation potential _ is assumed to have the following form;

= _f(F(Aij))dF (42)

where F is a scalar function, e.g., F = A2/s 2 - 1 and A 2 = _ AijAij , whereby it is easily

shown that

F rrskl Ars

where

and for case I,

17 = f(F)/_; 2

Frskl = c Irskl

or in case II,
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V V rs
rrs_ =-B J2,'_{_ [u _ -v

J2 _ J2

-v[. Irskl _]rs .___] )

J2 J

with Irskl defined to be 6rk_sl , such that the flow and evolutionary laws become,

•I (43)eij = F Prsij Ars

• = p-1...I (44)ars rslj eij

respectively.

After examining the above flow and evolution laws one might observe that only a

purely hardening material may be modeled with the above complete coupled form, since in

.I
order for steady state (_rs = 0) to occur the eij must be also zero. Thus no secondary

creep rate could be predicted. However, as shown in the following section, if one assumes a

decoupled but consistent form, a complete potential based, yet general, form can still be

obtained (e.g., one with a Bailey---Orwan [20] competing mechanism in its evolution law).

3.3.2 Decoupled Form

Now considering a decoupled form, we can assume the complementary dissipation

potential to take the form

= ff(F(r, ij))dF + fg(G(%j)ldG (45 /

where F and G are scalar functions (e.g., F = J2/a 2 - 1 and G = _/_2, see [40]), thus it

is easily shown that

where

c'3fl _ o"_ __t].._,_2g(G )
0-Sij {/_ij _iJ}

F = f(F)/a 2

13



so that the flow (equation (23)) and evolutionary (equation (27)) laws become,

and

•I = 17 3].. (46)
eiJ U

• -1 8f_

aij = -[Qrsij]-'_--ars

(47)

-I {On R
= [Qrsij] _ -II_ _g(G) ars}

rs

• -1 .I R
aij= [qrsij ] {ers -11_2 g(G) ars } (48)

respectively. Where with the above definition for H (see, equation (36)) the compliance

operator is defined as

-8_H

Qklij = Oakl Oaij

Qklij = Am a_2-1[ _m_7_)aklaij + Iijkl]

with

Iijkl = _ik5

(49)

Thus considering the case when m=l, the classically (i.e., first term below) assumed linear

kinematic evolutionary law [8] can be recovered, i.e.,

aij= i {_[j R (50)- i_2 g(G) a ij}

in which the evolution of back stress is proportional to the evolution of the irreversible

strain rate minus a thermal recovery term. Clearly, this analytical form allows for steady

state (i.e., aij = 0) without the added requirement that the inelastic strain be zero.

Considering the more general case given above, i.e., m> 1, the commonly assumed

evolution equation for the back stress (aij) containing a strain induced recovery term can

be recovered under a multiaxial state of stress. However, as opposed to the conventional

in which an arbitrary function [42] is multiplied by [Ie_jll, the present form of theapproach

thermodynamically based derivation is seen to lead to the inclusion of a specific scaling

14



factor _] (i.e., the projected back stress length) for that same term (see equations below).

This can be seen by substituting in the values (cf. equation(49)) for the compliance

operator into equation (48), that is,

• 1 (m-l) -1-I R
_ij = --q-'[ a_ aklaij + Iklij ] {ekl-]_2g(G) akl}

(51)

where q = A m a_2 -1

An important and not trivial next step, is the inversion [32,42] of the compliance

operator. This inversion may not always be available in analytical form, although in the

above case it is and equation (51) becomes,

where

• 1 I _m
aij=__[kli j 72 aklaij ]{}I 1 R]_2 g(G) akl}

^

Realizing that

}I __ nklH _IH

it is easily shown that

(52)

• _ i .I }Ill _2 (1-2m) (53)aij _ [eij- I? aijll - g(G) aij ]

where

^

nldakl
T2

Therefore the fully thermodynamically consistent evolutionary law associated with a

complementary dissipation potential whose functional dependence is taken as in equation

(36) isequation (53).

Consequently, comparing equation (53) with similarforms found in the literature

[8,10,17,18,19] one can see a difference in the leading term typically taken as a constant

and here shown to be a function of the back stress, i.e., (l/q) and the lack of an

appropriate scaling factor in front of the strain induced recovery term, i.e., aij[I }ijl]. The

15



implications of this scaling factor _7on the response prediction due to multiaxial states of

stress is anticipated to be significant but still remains to be investigated. These differences

are related to the fact that here the flow and evolutionary laws are associative and directly

linked to the Gibb's potential, through the compliance operator. Another distinction is the

resulting desirable numerical features, for example the symmetry in the consistent tangent

stiffness matrix produced by the present form, equation (52), and discussed at length in

[32]. The disappearance of the strain induced recovery term under a uniaxial state of

stress, thus implying no detraction from the uniaxial predictive capability of the model,

can be viewed as a price one pays for this symmetry. Inclusion, however, of both a uniaxial

as well as multiaxial strain induced recovery term can be achieved by a modification of the

assumed form of the present dissipation potential [8,38], thereby suggesting a theory with

not only the desired uniaxial predictive capability but all of the theoretical and numerical

niceties discussed above as well.

Finally, examining the form proposed by Robinson [15,16], it is clear that this form

is merely a truncation of the strain induced recovery term discussed above. Thus, this

form as well can easily be modified to be consistent with a complete potential framework

by the multiplication of a fourth order tensor (i.e., the inverse of the compliance operator),

that is

where

• _ 1 Nijkl{}Ii_R_ g(a)aij q aij}

m

Nijkl = [ Iijkl---'_2 aklaij]

without altering any of its uniaxial predictive capabilities.

(54)

4.0 CONCLUSION

A complete potential based framework utilizing internal state variables has been

presented for the derivation of reversible and irreversible constitutive equations. This

framework assumes the existence of the total (integrated) form of either the (Helmholtz)

free energy or the (Gibbs) complementary free energy a pr/or/. Two options for describing

the flow and evolutionary equations have been discussed; wherein the fully coupled option

the irreversible strain rate is intimately linked to the thermodynamic internal state, hence

its functional dependence is completely defined once the free energy is assumed. This

16



option was shown to be over restrictive. The second option, the decoupled form, provides

significant flexibility since the inelastic strain is taken as an independent state parameter.

Here the definition of the inelastic strain rate requires the identification of a

complementary dissipation potential. As a consequence of the decoupled form a new

operator, i.e. the Compliance operator, is defined which provides a link between the

assumed Gibb's and complementary dissipation potential and ensures a number of desirable

theoretical and numerical features. It has been shown that although many theories in the

literature do not conform to the general potential framework outlined, it is still possible in

some cases, by slight modifications of the employed forms, to restore the complete potential

structure.
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